
CiviReport 101
-

A gentle introduction to creating,
modifying and troubleshooting CiviCRM

reports

About Freeform Solutions

● A Not-for-profit social enterprise
● Mission - provide IT consulting for not-for-profits
● We’ve worked with NFP for over 10 years, CiviCRM

for over 6 years
● We use Open Source (Drupal, CiviCRM, Formulize)

The presenter:
● Lola Slade: Developer and Client lead
● 3 years with Freeform
● 2 previous years as a report developer

About this presentation

● This talk is oriented to administrators and developers
○ Who have modified Civireport parameters and saved

new reports
○ Who have not modified CiviCRM report files via the

PHP templates or are still struggling with it
● Inspiration for this talk

○ Reporting is important!
○ Civireport is hard or at least kind of crusty

● There is a supporting extension with example reports:
https://github.com/freeform/ca.freeform.civireport101

https://github.com/freeform/ca.freeform.civireport101
https://github.com/freeform/ca.freeform.civireport101

Quick Terminology Overview

CiviReport:
● Is a PHP class that can be extended by new reports

(CRM_Report_Form)
● Provides a default Smarty template for the form controls

A report template:
● Is a PHP class that overrides CRM_Report_Form
● Can include a custom Smarty template or use the

default one
● Yes: This is 2 different uses of the word template

A report instance:
● Is a DB record saving report preferences & menu entry

Administration Overview

Registering a report template:
● Is mapping the class name to a default report name,

description and webpath
● Use Administer >> CiviReport >> Manage templates
● If you create an extension this is handled for you

Setting up new reports - Manual Method

This is similar to overriding a Smarty template. It consists of:
● Setting the Custom PHP and Custom template

directories. At Administer >> System Settings >>
Directories

● Copying the report class into a subfolder of the Custom
PHP folder

● Copying the Smarty template class into a subfolder of
the Custom Templates folder

● Register and enable the Report template
● Administer >> CiviReport >> Create New Report from

Template

Setting up new reports - Extension

Steps:
● Install and test CiviCRM Buildkit
● Use Buildkit to create a demo site
Or:
● Create a local install demo site manually
● Install civix

The following commands:
civix generate:module org.myorg.extname
cd org.myorg.extname
civix generate:report MyCamelName

Troubleshooting reports

● Troubleshoot the SQL first!
● Insert a debugging statement in postProcess to see the

SQL: CRM_Core_Error::debug, dpm, print_r etc.
● Oh great, we get this:

SELECT {50 columns} FROM {20 tables}
WHERE {who knows it doesn’t fit on the
screen}

● Let’s change this to:
SELECT {5 columns} FROM {formatted 20
tables} WHERE {nicely formatted}

● Then comment out where clauses and joins one by one
● Possibly add extra WHERE clause to limit results to a

couple of test contacts

Troubleshooting example

The bookkeeping report was returning the wrong result for
all donations for only one contact.

By following the previous procedure I found that 1)
commenting out the group by we were getting duplicate
rows for that contact, 2) commenting out the phone table
join we got the right result.

The problem turned out to be 2 phones records marked
is_primary. Probably an import or api bug had caused it.

Basic outline of a report

1. Define columns with __construct
2. The user selects columns, filters and other options
3. Like any CiviCRM Form the selections are sent to

postProcess as $params
4. postProcess then calls select, from, where, groupBy

etc. to generate $sql
5. $sql gets executed to generate $rows
6. $rows can by modified using a few functions including

alterDisplay
7. statistics calculates $statistics

postProcess$params $sql & $rows

The class creates a SQL statement

CiviCRM does best at rather simple SQL cases that
generate a grid of data but then so do most other reporting
tools as well

from
select where

Example 1 - Hello Reporting!

● A contrived example to show how much we can tear it
down

● Shows some of the services of the parent class
CRM_Report_Form

● Highlights the all important postProcess function

__construct: Adding tables and fields

This is where we build the _columns array. The first level
of keys is usually a table name.

alias - To give the table another name. This is used when
we use the same table multiple times in the query

dao, bao - Class name of the DAO or BAO for the table. If
both dao and bao are specified the BAO wins. These
are used for setting defaults for fields in case you don’t
fully specify the fields array.

grouping - Section the column selectors are displayed in
on the form. Hard to see since the default CSS does not
highlight the different groups.

fields, filters, group_bys, order_bys - arrays that we will
cover more on the next slide

__construct: Adding tables cont...

name - To specify the table name. This is used when we
use the same table multiple times in the query

For name, alias, and dbAlias: If you set dbAlias directly
then it takes precedence. Otherwise dbAlias gets
computed as alias.name

There is also a separate _options array for controls you
want on the report form that are not tied to the table.

fields: array options

The fields array contains keys for these true/false options:
required - This column cannot be de-selected
default - Checkbox is selected by default
no_repeat - Repeated values in the column are removed

in alterDisplay
no_display - Doesn't appear in the output, but can be

used in the query (or in PHP code that reads $rows)

filters: array options

The filters array contains keys for these options:

title - The title, which should match the field title if also
used there

default - Default value
operatorType - Form control to use to enter filter
options - A list of options if the operatorType is T_SELECT

or T_MULTISELECT
type - The variable type. Not having this will occasionally

cause an error so put it in.

select: Choosing visible columns
Here we have 2 jobs:
● Build the select clause and save in $this->_select
● Create the $this->_columnHeaders array which

determines which of the fields is visible
● The default code shows required columns + those

selected by the user

from: Building up the joins

This builds up the FROM SQL clause and stores it in
$this->_from. It is usually straightforward but can have
some logic needed when a report needs to operate in 2
fundamentally different ways.

For example, the contributions report needs a very
different FROM clause if it should show both soft credits
and regular credits.

Example 2 - A Basic report

● A very simple example that pulls in real data
● Highlights the __construct and select functions

Fields array cont...

name - <text> - To give the field another name. This
defaults to the key for this field array. Used when the
same field needs to appear twice. EG. id, birth_date as
age

alias - <text> - To give the table another name, just for this
field. This defaults to alias for the table array, or if not
set, the key for the table array. See note below.

dbAlias - <text> - To give the field another name.
statistics - array - To make query compute stats like sum,

count, avg on a numeric field. Applies to both "display
columns" and "filters".

Using option groups or pseudoconstants

These are lists of values and labels.

They are used for:
● Options for Filters and Group bys
● Replacing values in alterDisplay

The best place to figure out which one to use is to look at
other reports that use the same tables or to look at each
CiviCRM component folder under civicrm/CRM for a class.
EG. CRM_Core_PseudoConstant

If there is no class it might have been removed in recent
refactoring. If so use CRM_Core_OptionGroup::values

alterDisplay: Option values, links, and more!

● This function alters the $rows array to change the
displayed results.

● Note: Altering rows 1 x 1 may be lower performance
than modifying the SQL.

● Often used to add links and display option values.
● It can be used for more advanced row changes.

Example:
Suppose we have a report that shows parents and children.
We could use this function to remove child contact details
except for name, leaving the parent details depending on
the logged in staff role.

Example 3 - A Fancier report

● An improved example that has some formatted columns
and multiselect filters

● Highlights the alterDisplay function
● Shows an example of dbAlias and _options

Alternatives to CiviReport

● Civivisualize - This is good for viewing data and
creating great looking dashboards
○ Does not have export or PDF features

● Forena Reports - Drupal only
● Exports and Report - WP only
● Java reporting or local tools with a connection to the

CiviCRM DB
● PHP Reporting tools - Most are quite basic. The best I

found was PHPReports

Topics for CiviReport 201

● More Statistics and custom summary tables
● Creating a custom template (like the Event Income

report)
● More advanced grouping (like the SYBUNT, LYBUNT

reports etc.)
● Misc other stuff: Charts

Questions?
Feedback?

Should we have BOF session for reporting?

This has been: CiviReport 101

Thank you!

● Freeform Solutions http://freeform.ca info@freeform.ca
● Lola Slade lola@freeform.ca

Resources:
● The documentation: http://wiki.civicrm.

org/confluence/display/CRMDOC/CiviReport+Reference
● Allan Shaw’s 2012 talk on CiviReport: https://vimeo.

com/groups/civicrm/videos/40102206
● The samples for this talk: https://github.com/freeform/ca.freeform.

civireport101
● Eileen McNaughton’s extended report extension: https://civicrm.

org/extensions/extended-reports
● Other report extensions on the extensions directory (about 8 total)
● https://www.drupal.org/project/forena
● https://wordpress.org/plugins/exports-and-reports
● http://community.pentaho.com/projects/reporting/
● http://jdorn.github.io/php-reports/

http://freeform.ca
mailto:info@freeform.ca
mailto:lola@freeform.ca
http://wiki.civicrm.org/confluence/display/CRMDOC/CiviReport+Reference
http://wiki.civicrm.org/confluence/display/CRMDOC/CiviReport+Reference
http://wiki.civicrm.org/confluence/display/CRMDOC/CiviReport+Reference
https://vimeo.com/groups/civicrm/videos/40102206
https://vimeo.com/groups/civicrm/videos/40102206
https://vimeo.com/groups/civicrm/videos/40102206
https://github.com/freeform/ca.freeform.civireport101
https://github.com/freeform/ca.freeform.civireport101
https://github.com/freeform/ca.freeform.civireport101
https://github.com/freeform/ca.freeform.civireport101
https://civicrm.org/extensions/extended-reports
https://civicrm.org/extensions/extended-reports
https://civicrm.org/extensions/extended-reports
https://www.drupal.org/project/forena
https://www.drupal.org/project/forena
https://www.drupal.org/project/forena
https://wordpress.org/plugins/exports-and-reports/
https://wordpress.org/plugins/exports-and-reports/
http://community.pentaho.com/projects/reporting/
http://community.pentaho.com/projects/reporting/
http://community.pentaho.com/projects/reporting/
http://jdorn.github.io/php-reports/
http://jdorn.github.io/php-reports/
http://jdorn.github.io/php-reports/

